

In this booklet you will find copies of the homework question that will be set throughout Year 7 for chemistry. If you lose your homework, please print out the corresponding pages and complete the questions.

•	HWK 7C1 States of Matter	Pages 2-3
•	HWK 7C2 Diffusion and Gas Pressure	Pages 4-5
•	HWK 7C3 Compounds and Solutions	Pages 6-7
•	HWK 7C4 Separation Techniques	Pages 8-9
•	HWK 7C5 The Periodic Table	Pages 10-11
•	HWK 7C6 Atomic Number and Mass Number	Pages 12-13
•	HWK 7C7 Chemical Reactions and Word Equations	Pages 14-15
•	HWK 7C8 Reactions of Metals	Pages 16-17
•	HWK 7C9 Acids and Neutralisation	Pages 18-19
•	HWK 7C10 Weathering and Erosion	Pages 20-21
•	HWK 7C11 Types of Rock	Pages 22-23

Due Date

Match the scientific vocabulary below to the definitions in the table. Try to make sure you can spell and remember what each word means.

Boiling	Condensation	Freezing	Melting

Pa	article Solid	Liquid	Gas
Scientific vocabulary	Definition		
	A very tiny object, are made from. Tl	, such as an atom or hey are too small to	molecule, that materials be seen with a microscope.
	In this state, a sub The particles mov	ostance can flow and e apart quickly in al	d can also be compressed. I directions.
	In this state, a sub particles can move	ostance can flow but e but stay touching	cannot be compressed. The each other.
		stance connet he e	

flow. The particles cannot move, they only vibrate on the spot.
In this state, a substance cannot be compressed and it cannot

The change of state from liquid to solid at the melting point of a
substance.

The change of state from gas to liquid. It can happen at any temperature below the boiling point.

The change of state from solid to liquid at the melting point of a substance.

The change of state from liquid to gas that occurs when bubbles of the substance in its gas state form throughout the liquid.

1 Cross out the wrong words to complete these sentences.

- a Solids have shapes that (change easily / are big / stay the same).
- **b** Solids have volumes that (change easily / are big / stay the same).
- c It is (very easy / fairly easy / very hard) to compress a solid.
- **2** Tick 'true' or 'false'.

Liquids are able to change shape.

Liquids do not have a fixed volume.

∐ true

□ false

true true

2

3 The diagram below shows particles in a gas, a solid and a liquid. Each arrow, A, B, C and D, represents a change of state.

(i) Choose from the following words to complete the sentences below.

boiling	condensing	distilling	evaporating	filtering	freezing	melting
	Change	of state A is calle	ed			
	Change	of state B is calle	ed			
	Change	of state C is calle	ed			
	Change	of state D is calle	ed			

4 A test tube of crushed ice is taken out of a freezer and left in a warm room. The graph shows how the temperature in the test tube changes.

(a) What is happening to the ice at stage **B**?

.

(b)

b) Four descriptions of the ways molecules could move are given below.

.....

	They vibrate around fixed points.	
	They move past each other and are close together.	
	They move in straight lines, colliding occasionally.	
	They all move in the same direction at the same speed.	
(i)	How do the molecules move at stage A ? Write A in the correct box above.	
(ii)	How do the molecules move at stage C ? Write C in the correct box above.	

Due Date

Match the scientific vocabulary below to the definitions in the table. Try to make sure you can spell and remember what each word means.

Density Diffusion Gas Pressure

Scientific vocabulary	Definition	
	The process by which particles in liquids or gases spread out	
	through random movement from a region where there are	
	many particles to one where there are fewer.	
	The force exerted per unit area on the walls of a container. It is	
	caused by collisions of particles with the walls.	
	The mass of a material in a certain volume.	

Q1. Name the process that causes the water to change colour when you add a tea bag.

Q2. Complete the passage below to explain why the water changes colour.

	Use the words:	Colour	Lower	Higher
When a te	a bag is added to hot w	ater, the substa	ances in the tea	a bag move from an
area wher	e they are in	c	oncentration to	o an area where they
are in		. concentration		
This cause	es the water to change			

Q3. Does this process happen faster in a liquid or a gas? Tick *one* box.

A	In a gas, because particles in a gas move faster than particles in a liquid.
В	In a gas, because particles in a liquid move faster than particles in a gas.
C c	In a liquid, because particles in a liquid move faster than particles in a gas
D D	In a liquid, because particles in a gas move faster than particles in a liquid.

Q5. Describe what happens to gas pressure when the temperature changes.

Q6. Describe what happens to gas pressure when the volume changes.

Q7. Use the words in the box to describe how a bottle collapses when heated, in terms of gas pressure.

	LOWER	PRESSURE	COLLIDE	DECREASES	FEWER	
To start, the bottle is heated.						
The air mo	The air molecules inside the bottle with the inside of the bottle, exerting					
gas	V	Vhen the bottle	is removed fr	om the water bat	h, the temperature	į
inside the l	oottle	, so t	here are	col	lisions between the	Ð
molecules and the inside of the bottle. As a result, the gas pressure inside the bottle						
becomes _		than the atr	nospheric pre	ssure outside the	e bottle, which	
causes the	bottle to colla	apse.				

Due Date

Match the scientific vocabulary below to the definitions in the table. Try to make sure you can spell and remember what each word means.

Dissolve	Insoluble	Mixture	Pure Substance

Soluble Solute Solution Solvent

Scientific vocabulary	Definition
	Made up of two or more pure substances that are mixed (not chemically joined) together. Its properties are different from the properties of the individual substances that make it up.
	A single material with no other substances mixed with it. It has the same properties all the way through.
	The solid or gas that is dissolved in a liquid.
	A substance, normally a liquid, that dissolves another substance.
	A substance that can dissolve in a given solvent.
	A substance that cannot dissolve in a given solvent.
	The complete mixing of a solute with a solvent to make a solution.
	A mixture of a solute dissolved in a solvent. All parts of the mixture are the same.

Q1. The diagrams represent the arrangement of atoms or molecules in four different substances, A, B, C and D.

Each of the circles, \bigcirc , \bigcirc and \bigcirc represents an atom of a different element.

- (i) Which substance is compound?
- (ii) Which substance is a mixture?
- (iii) Which two substances are elements? and
- Which two substances could be good conductors of heat? and (iv)

Which substance could be carbon dioxide? (v)

С

Q2. Amy's family are at the beach during the summer. Amy and her sister have a bucket containing seawater and sand.

Read the following statements. Which are **true** and which are **false**?

Tick **one** box for each statement.

Water is a solvent for salt.

When a solid dissolves in water, the solid is called a solute.

Sand sinks in water because water is more dense than sand.

- **Q3** A compound contains:
- A. only one type of atom.
- B. only one element.
- C. only two elements joined together.
- D. at least two elements joined together.
- **Q4** The particle diagram opposite shows:
- A. an element.
- **B.** a compound.
- **C.** a mixture of elements.
- **D.** a mixture of compounds.

Q5 What do you see when a solid dissolves in a liquid?

- a the solid disappears
- **b** the solid sinks to the bottom of the liquid
- c the liquid evaporates
- d the liquid changes colour

Q6 A solution is saturated with a solid solute. What happens when more solute is stirred into it?

- A. The added solute dissolves.
- **B.** The added solute disappears.
- **C.** The added solute evaporates.
- **D.** The added solute sinks to the bottom.

Due Date

Match the scientific vocabulary below to the definitions in the table. Try to make sure you can spell and remember what each word means.

Chromatogram Chromatography Distillation

Filtrate Filtration Residue

Scientific vocabulary	Definition		
	A way of separating pieces of solid that are mixed with a liquid or solution by pouring through filter paper.		
	The liquid or solution that collects in the container after the mixture has passed through the filter paper.		
	The solid that collects in the filter paper during filtration.		
	A technique that uses evaporation and condensation to obtain a solvent from a solution.		
	A technique to separate mixtures of liquids (often coloured) that are soluble in the same solvent.		
	An image obtained from chromatography.		

Q1 This apparatus can be used to evaporate a solution.

What is the name of the piece of equipment labelled A? Tick one box.

Describe two hazards of doing this experiment.

i	
ii	

Year 7 Chemistry Homework

Q2. Gary wanted to find out if some food colourings contained a banned food dye. He put a drop of each food colouring and the banned food dye onto some special paper. He hung the paper in a beaker of water.

After 10 minutes, the banned food dye and some of the dyes from the food colourings had moved up the paper. Gary's results are shown above right.

(a) Gary wrote the labels on the paper in pencil. Why should he not write them in ink?

.....

Which method did Gary use to separate the dyes? Tick the correct box (b)

(0)	which here		eparate the uyes			
		chromatography		distillation		
		evaporation		filtration		
Q3 dis	3.Chris collecte ssolved in it. It	ed some sea water n had sand mixed in it	ear a beach. The	e sea water ha	d salt	A B
Ch	nris separated	the sand from the sa	alt water as show	n below.		
(i)	What is this	method of separation	n called?			
(ii)	What is subs	stance A?				/ 0
(iii)	What is the	part labelled B?			flask —	
Q4.	Rema used th	e apparatus below to	o distil 100 cm ³ o	f water-soluble	e ink.	salt water
the	rmometer ——		(a) W Ci	hich processes	s occur during t letter.	g distillation?
	AL	water out conden	ser A -	condensation	then evapora	tion

(b) Give the name of the colourless liquid that collects in the test-tube.

Due Date

Match the scientific vocabulary below to the definitions in the table. Try to make sure you can spell and remember what each word means.

Group	Metal	Non-Metal	Period	Periodic Table
Scientific vocabula	ary Defin	ition		
	An ar formi	rangement of element ng groups and periods	s in the order of t	heir atomic numbers,
	All the table.	e elements in the colu	mns (labelled 1 to	7 and 0) in the periodic
	A hor	izontal row in the perio	odic table.	
	Eleme shiny, and se	ents on the left of the s good conductors of e olid at room temperat	stepped line of th lectricity and hea ure.	e Periodic Table. Most are t, malleable and ductile,
	Eleme are du gaseo	ents on the right of the ull, poor conductors of ous at room temperatu	e stepped line of t electricity and he re.	he Periodic Table. Most eat, brittle, and solid or

Q1.

The diagram shows an outline of part of the Periodic Table of Elements.

(a) What is the name of the element with the symbol H?

(b) In which regions of the Periodic Table are the following types of element found?

(i)	non-metals (such as oxygen and chlorine):	Region
(1)	non metals (such as oxygen and onionne);	rtogion

(ii) very reactive metals (such as sodium and potassium); Region

(iii) less reactive metals (such as copper and zinc). Region

(c) Why is copper sulphate **not** found in the Periodic Table?

.....

Q2. Elements can be represented by symbols.

Complete the table below by adding the missing names and symbols.

Element	Symbol
Helium	
Copper	
	Mg
	CI
Iron	
Sulfur	
	Na
	AI

Q3 Which of the following lists contains only elements?

- A. air, iron, iodine, magnesium
- B. zinc, gold, aluminium, oxygen
- C. nitrogen, copper, mercury, water
- D. chlorine, argon, sodium, limestone

Q4 Which list contains only non-metal elements?

- A. oxygen, nitrogen, argon, silicon
- B. chlorine, oxygen, sulfur, iron
- C. bromine, helium, carbon, air
- D. gold, silver, platinum, mercury
- Q5 Metals like aluminium are used to make cooking pots because they are ...
 - A. brittle and good conductors of heat.
 - B. malleable and good conductors of heat.
 - C. brittle and poor conductors of heat.
 - D. malleable and poor conductors of heat.
- Q6 All metals are ...
 - A. solids.
 - B. strong.
 - C. brittle and easily broken.
 - D. conductors of electricity.

Due Date

Match the scientific vocabulary below to the definitions in the table. Try to make sure you can spell and remember what each word means.

Atom Atomic Number Element Mass Number

Scientific vocabulary	Definition
	A substance made up of only one type of atom. It cannot be broken down chemically into any simpler substance.
	The smallest part of an element that can still be recognised as that element.
	The number of protons (which equals the number of electrons) in an atom. It is sometimes called the proton number.
	The number of protons plus neutrons in the nucleus of an atom.

Q1.

In the 19th Century, a scientist called John Dalton used symbols to represent atoms. The symbols he used for atoms of three different elements are shown below.

O

The diagrams below show different combinations of these atoms.

(ii) Give the letter of the diagram which shows a mixture of **two** compounds

(iii) Give the letter of the diagram which shows a mixture of an element and a compound

.

Q2: Using a copy of the periodic table find the atomic number and the mass number for the following elements.

Element	Atomic Number	Mass Number
Hydrogen		
Calcium		
Sodium		
Magnesium		
Oxygen		
Carbon		

Q3: Using the numbers found in the previous question, calculate the number of neutrons for each element.

Remember: Neutron number = Mass number - Atomic Number

Element	Calculation (show your working)	Neutron Number
Hydrogen		
Calcium		
Sodium		
Magnesium		
Oxygen		
Carbon		

Due Date

Match the scientific vocabulary below to the definitions in the table. Try to make sure you can spell and remember what each word means.

Chemical Symbol Word Equation Reactant Product Chemical Reaction Reactive

Scientific vocabulary	Definition
	A change in which atoms are rearranged to create new substances.
	A one- or two-letter code for an element that is used by scientists in all countries.
	A way of representing a chemical reaction simply. The reactants are on the left of an arrow, and the products are on the right. The arrow means <i>reacts to make</i> .
	A substance that is made in a chemical reaction.
	A starting substance in a chemical reaction.
	A substance that reacts vigorously with substances such as dilute acids and water.

Q1. The table shows the observations made when four metals are added to cold water and to dilute hydrochloric acid.

metal	observations with cold water	observations with dilute hydrochloric acid
zinc	no reaction	bubbles of gas form and the metal slowly dissolves
platinum	no reaction	no reaction
potassium	the metal floats and then melts, a flame appears, and sometimes there is an explosion	(cannot be done safely)
nickel	no reaction	a few bubbles of gas form if the acid is warmed

(a) Write the names of these **four** metals in the order of their reactivity.

	most reactive	
	least reactive	
(b)	Give the name of	another metal, not in the table, which reacts in a similar to potassium.

Q2: Lithium reacts with water. Look at the word equation for this reaction.
lithium + water \rightarrow lithium hydroxide + hydrogen.
(a) One of the reactants is a liquid. Which one?
(b) One of the products is a compound. Which one?
(c) One of the products is a gas. Which one?
Q3: Write word equations for each of the following reactions. (a) Sodium reacting with chlorine to make sodium chloride.
(b) Heating copper carbonate to make copper oxide and carbon dioxide
(c) Reacting magnesium hydroxide and dilute sulphuric acid to make magnesium sulphate and water.
Q4 A teacher mixed iron filings with sulphur on a metal tray. She heated the mixture in a fume cupboard. Sulphur is yellow. Iron filings are grey. The mixture glowed very brightly. The teacher turned off the Bunsen burner. The glow spread through the mixture. When the mixture cooled, a black solid called iron sulphide was left. (a) From this information, give one way you can tell that a chemical reaction took place.
Q4 A teacher mixed iron filings with sulphur on a metal tray. She heated the mixture in a fume cupboard. Sulphur is yellow. Iron filings are grey. The mixture glowed very brightly. The teacher turned off the Bunsen burner. The glow spread through the mixture. When the mixture cooled, a black solid called iron sulphide was left. (a) From this information, give one way you can tell that a chemical reaction took place. (b) (i) When iron is heated with sulphur, iron sulphide is formed. Give the name of the solid formed when zinc is heated with sulphur.
Q4 A teacher mixed iron filings with sulphur on a metal tray. She heated the mixture in a fume cupboard. Sulphur is yellow. Iron filings are grey. The mixture glowed very brightly. The teacher turned off the Bunsen burner. The glow spread through the mixture. When the mixture cooled, a black solid called iron sulphide was left. (a) From this information, give one way you can tell that a chemical reaction took place. (b) (i) When iron is heated with sulphur, iron sulphide is formed. Give the name of the solid formed when zinc is heated with sulphur. (ii) Some fossil fuels contain sulphur. When fuels burn, sulphur reacts with oxygen. Complete the word equation for this reaction. sulphur + oxygen →

Due Date

Match the scientific vocabulary below to the definitions in the table. Try to make sure you can spell and remember what each word means.

Oxidation Reactivity Series Chemical Property Salt

Scientific vocabulary	Definition
	How a substance behaves in its chemical reactions.
	A chemical reaction in which a substance combines with oxygen.
	A list of metals in order of how vigorously they react.
	A compound in which the hydrogen atoms of an acid are replaced by atoms of a metal element.

Q1. (a) Magnesium chloride is formed when magnesium reacts with an acid.

(i) Complete the word equation for the reaction between magnesium and this acid.

magnesium

magnesium +→ ^{chloride} +

(ii) Suggest why magnesium chloride can be made by mixing magnesium with this acid but copper chloride **cannot** be made by mixing copper with this acid.

.....

.....

(b) Copper sulphate is made by adding copper oxide to a different acid. Give the name of the acid which is used.

.....

Magnesium burns in air giving a very bright light.

(c) Complete the word equation below to show this reaction.

magnesium + \rightarrow

Q2. The table contains information about five metals, A, B, C, D and E.

(a) Use the information in the table to arrange the metals in order of reactivity.

most reactive	 Metal	how it reacts with cold water	how it reacts with hot water
	 А	no reaction	extremely slowly
	 В	no reaction	no reaction
	 С	hardly at all	slowly
least reactive	 D	slowly	quickly
	E	quickly	very violently

(b)(i) Which metal in the table could be copper?

.....

(ii) Which metal in the table could be sodium?

.....

(iii) Which metal in the table could be iron?

.....

Q3. The flow chart shows how zinc sulphate can be obtained.

(a) In the reaction $zinc oxide \rightarrow zinc$ an element is removed from zinc oxide to leave zinc. Give the name of the element.

.....

(b) (i) Zinc sulphate can be made in a reaction between zinc and an acid. Give the name of the acid.

.....

(ii) In the reaction between zinc and the acid, hydrogen is formed. Describe the test for hydrogen and the result if hydrogen is present.

Due Date

Match the scientific vocabulary below to the definitions in the table. Try to make sure you can spell and remember what each word means.

Indicator Neut	ralisation	pH Scale	Acid	Alkali	Salt	Base
Scientific vocabulary	Definition	า				
	A solution	ו with a pH va	lue less th	an 7.		
	A soluble	base.				
	A substance that neutralises an acid – those that dissolve in water are called alkalis.					
	Substance alkaline. 1	es used to ide The colour is c	ntify whet different in	her unknowr acidic and al	solutions lkaline solu	are acidic or ıtions.
	In this rea acid.	action, an acic	l cancels o	ut a base or a	a base canc	els out an:
	This show has a pH k solution o	vs whether a s between 0 an of pH 7 is neut	substance d 7. An alk tral.	is acidic, alka aline has a pl	line, or neu H between	utral. An acid 7 and 14. A
	A compou atoms of a	und in which t a metal elem	the hydrog ent.	en atoms of a	an acid are	replaced by

Q1. Dilute acids react with many things.

Tick the **four** boxes by the correct descriptions.

Tick no more than four boxes.

Acids always dissolve glass.

Acids turn universal indicator solution blue.

Acids can be burned as fuels.

Acids damage teeth.

Acids may harm your skin.

Acids react with metals such as magnesium.

Acic

ds are always poisonous.

Q2. pH paper is used to show whether a solution is acidic, neutral or alkaline.

One type of pH paper shows the following range of colours.

colour of pH paper	red	orange	yellow	green	blue	purple
pH value	0 - 4	5	6	7	8 - 10	11 - 14

Some solutions were tested with pH Paper. The results are shown below.

(a) Complete the following table by placing a tick in the correct column for each substance.

substance	substance colour of pH paper		neutral	alkaline
orange juice	red			
egg white	blue			
oven cleaner	purple			
milk	yellow			

(b) Which substance was the most alkaline?

.....

(c) Equal amounts of egg white and milk are mixed. What is the most likely pH of the mixture? Tick the correct box.

pH2	pH6	pH7	pH14

Q3.

The chemical formula for hydrochloric acid is HCl. The chemical formula for sodium hydroxide is NaOH.

When they react together, two products are formed. The chemical formula for one product is NaCl.

(i) Complete the word equation below with the **names** of both products.

(ii) **On the dotted line**, give the chemical formula of the other product.

sodium hydroxide NaOH	+	hydrochloric acid HCl	\longrightarrow	NaCl	+	
(iii) What is this type of reaction called?						

Due Date

Match the scientific vocabulary below to the definitions in the table. Try to make sure you can spell and remember what each word means.

Porous	Uplift	Erosion	Deposition	Transport		
	Sec	liment	Weathering			
Scientific vocabulary	Defir	ition				
	The s rock.	The settling of sediments that have moved away from their or rock.				
	The t from	The breaking of a rock into sediments and their movement away from the original rock.				
	This their	This type of material has small gaps that may contain substances in their liquid or gas states. Water can soak into a porous material.				
	Piece	Pieces of rock that have broken away from their original rock.				
	Move	Movement of sediments far from their original rock.				
	This rocks	This process happens when huge forces from inside the Earth process upwards.				
	The b or bi	The breaking down of rock into smaller pieces by physical, ch or biological processes.				

Q1. The diagram gives information about some of the layers that make up the Earth.

What name is given to the outer layer of the Earth labelled \mathbf{X} ?

.....

Q2.

 Helen weighed three pieces of rock and soaked them in water. The next day, she weighed them again. Her results are shown below.

rock mass before soaking in water (g)		mass after soaking in water (g)
granite	26.3	26.3
marble	20.4	20.4
sandstone	25.5	27.6

Rocks that have lots of small spaces are described as **porous**.

What evidence is there in the table that sandstone is porous, but granite and marble are **not** porous?

..

(b) Helen put the soaked sandstone into a freezer for 24 hours.

Water in the spaces in the sandstone froze and expanded.

(i) What would happen to the sandstone as the water froze and expanded?

.....

(ii) In the winter this process happens in rock in the countryside.

What is the name of this process?

.....

(c) Helen placed fresh pieces of granite, marble and sandstone in beakers of dilute sulphuric acid. Only the marble reacted with the acid. Only the marble reacted with the acid.

Use Helen's results to explain why granite is more suitable than marble for a statue in a city centre.

..

Due Date

Match the scientific vocabulary below to the definitions in the table. Try to make sure you can spell and remember what each word means.

Magma Rock Cycle Igneous Rock Mantle Lava

Metamorphic Rock Sedimentary Rock

Scientific vocabulary	Definition
	Formed when liquid rock (lava or magma) cools or freezes. Their minerals are arranged in crystals. Examples are granite, basalt, and obsidian.
	Liquid rock that is above the Earth's surface.
	Liquid rock below the Earth's surface.
	The layer of Earth that is below the crust. It is solid but can flow very slowly.
	Formed from existing rocks exposed to heat and/or pressure over a long time. Examples are marble, slate, and schist.
	Sequence of processes where rocks change from one type to another, over a timescale of millions of years.
	Formed from layers of sediment, which can contain fossils. Examples are chalk, limestone, and sandstone.

Q1. The photograph shows a piece of sandstone.

(i) The sandstone in the photograph contains a fossil. What is a fossil?

.....

.....

(ii) What group of rocks does sandstone belong to?

.....

(iii) Granite and basalt are igneous rocks. They contain crystals but **no** fossils. Explain why igneous rocks do **not** contain fossils.

.....

Q2. The diagram shows four different layers of sedimentary rock in a cliff.

